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ABSTRACT
The tetrachoric series is a technique for evaluating multivariate normal
probabilities frequently cited in the statistical literature. In this paper
we have examined the convergence properties of the tetrachoric series and have

established the following.

Fg{ orthant probabilities, the tetrachoricf?erigg converges if
ipijl < Ti(k=1), 1 ;_i < J < k, where pjj are the correlation coefficients of
a k-variate normal digf;ibution. The tetréchoric series for orthant proba-
bilities diverges whenever k is even and Pij > 1/(k-1) or k 1is odd and
Pij > 1/(k=2), 17:_i.< igk.

Other specifié‘re§u1ts concerning the convergence or divergence of this
series are also given.

The principal point is‘ﬁhat the assertion that the tetrachoric series

converges for all k 3 2 and all ( }3 such that the correlation matrix is

Fho

positive definite is false.
AMS(MOS) Subject Classification: Primary 62H05
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SIGNIFICANCE AND EXPLANATION

A standard technique for evaluating multivariate normal

probabilities, widely cited in the literature, is known as the
tetrachoric serijes.

In this report, it is shown that this technique is defective

in that the series will sometimes diverge.
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THE USE OF THE TETRACHORIC SERIES
FOR EVALUATING MULTIVARIATE NORMAL PROBABILITIES

Bernard Harris and Andrew P, Soms
1. TNTRODUCTION AND SUMMARY

Let X = (x],xz,...,xk), k > 2, be a normally distributed random vector
with zero means and unit variances, that is, X has the probability density
function

~T _'I ~
(2“)'k/2|Rl—!§e°‘/—‘)x R 'x

f;(x]’XZ""’xk) = ’ (1.1)

where x = (x],xz,...,xk)T, AT denotes the transpose of the matrix A, and R, the
correlation,matrix is a k x k positive definite symmetric matrix with elements

Pi; and Pii = Iy 1= 1,25...4k. Further, let
2
d(x) = (2m 2 e X /2,

the standard normal probability density function,and let

A X
o(x) = [ o(t)dt.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.
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In addition, let

H_1(x) = (1-0(x))/(x)
and for i >0, let

2 2 2
1 dx]

For i >0, Hi(x) are the Hermite polynomials.

In order to evaluate

(1.2)

(1.3)

P{X1>h],X2>h2,...,Xk>hk} = g : { A fi(x]’XZ""’xk)dx]dXZ"‘dxk’
k 2 1
(1.4)
“I.G. Kendall [6] proposed writing
e
- - — ‘ ‘ ——
i 5 s




P{X]>h],X2>h2,...,Xk>hkj =
. 5 ol g
Piioe 5 o —d— 1 Ho_y(hy)elh.), (1.5)
=0 Mg =0 i<k Migtod=1 T

where n; = Znij + ani'
VER LV N EA Y

The right hand side of (1.5) is called the tetrachoric series. The
particular case obtained by ordering the terms of (1.5) with respect to in-

creasing values of X"ij’ namely

- ok
AR SN - S S R B
N=0 ny, Mk-1,k 1<i<j<k "ij =

nhere M3 >0 and Z"ij = N, 1is known as the Kibble series or the tetrachoric
series with Kibble ordering, since W.F. Kibble [9] obtained the corres-
ponding series for the multivariate normal density function. Note that

(1.6) is the result that would be obtained upon integrating the series given
in [9] term-by-term. Consequently, to avoid ambiguity, we will refer to

the series obtained by Kibble in [9] as the Kibble series and we will call

the corresponding series for the multivariate normal distribution the




tetrachoric series with Kibble ordering.

In the sequel, to simplify notation, the right hand side of (1.5) will
be denoted by Tk(hl’hZ""hk) and Tk(0,0,...,O) will be denoted by T, .
Similarly, the right hand side of (1.6) will be denoted by T;(h,,hz,...,hk)
and TE. Also, sums or products on (i,j) with 1 < i < j < k will be indexed
by i < j.

The tetrachoric series is widely employed in applications of multi-
variate analysis and is quoted in many standard books on statistics and in
many papers as a suggested method for evaluating (1.4), often with the
comment that convergence may be slow unless lpijl is small for all i,j,

i ¥ j. Specifically, the reader is referred to T.W. Anderson [1], page 19,
where the tetrachoric series is suggested as a way of evaluating multi-

variate normal probabilities. In R.E. Barlow, D.J. Bartholomew, J.M.

Bremner, and H.D. Brunk [2], page 137, the tetrachoric series is mentioned

as one of several possible ways to evaluate orthant probabilities. They
comment that the convergence is not "fast enough for practical use unless
the pij's are small". R.L. Plackett [12] comments that "although the

tetrachoric series will always converge, it does so very slowly when the




absolute values of the correlation coefficients are near unity". The Kibble

and tetrachoric series are described in connection with orthant probabilities
in N.L. Johnson and S. Kotz [5], pages 44-46, where they note that "theseseries

converge very slowly unless all the pij's are small". M.G. Kendall and A.

Stuart [8] describe the tetrachoric series on pages 352-353 and assert that
the series for the orthant probabilities always converges, but only slowly

if the pij are not small. G.P. Steck [13] described the Kendall technique

noting that the resulting series converges slowly when the py; are large.

J

S.S. Gupta [4] discussed both the results of Kendall and Kibble for the

trivariate normal distribution, remarking that the series converge only very

slowly for high values of Ipijl' In [7], M.G. Kendall employed the tetra-
choric series for orthant probabilities to study the distribution of upruns
(sequences of increasing observations) in a time series. For this purpose,
he specifically gives the terms of the tetrachoric series for the orthant
probabilities for k = 2,3,4. He says that "the expressions are not as
difficult as they look" and that "they converge fairly quickly for damped

autoregressive series". Kendall says further that "they are, he thinks,

amenable to calculation".




In this paper, we have reexamined the convergence of the tetrachoric
series and have ascertained that under specified conditions on the corre-

lation matrix R, the tetrachoric series will in fact diverge.

The development in this paper is as follows. In section two, we dis-
cuss the Kibble series for the multivariate normal density function, which
is an intermediate step in arriving at the tetrachoric series. This will
permit us to subsequently indicate the difficulty with the tetrachoric
series. A sufficient condition for the convergence of the tetrachoric series
is given in section three. The third section is also devoted to illustrations

of the non-convergence of the tetrachoric series.

2. THe KIBBLE SERIES FOR THE MULTIVARIATE

NorMAL DensITY FuncTION

F.G. Mehler {10] derived u series expansion for the density function
of the bivariate normal distribution. This was subsequently extended to the
ceneral k-variate density (1.1) by W.F. Kibble [9]. Unfortunately, Kibble's
paper contains some defects and as we will show, the Kibble series does not

necessarily converge.  Since this is an intermediate step in arriving at

P




the tetrachoric series, it is desirable to rederive the Kibble series, which

will permit us to obtain both a correct result as well as to indicate the

error in Kibble's paper. Accordingly, we first establish the following theorem.

THEOREM 1. For -1/(k-1) <pgg<W(k-1), 1 <i<j<k,

N
© © 1‘] k
( e eain)im SRS i —J— mH (x.)¢>(x.). (2.1)
X12%5 _ = n; i i
n]2-0 M1k 0 i<j "ij" i=1

This series is known as the Kibble series and converges absolutely if the

Dij satisfy the above restrictions.

S 7
. =kt Rt _ T
Proof. Let w(t],tz,...,tk) =g 2 = (t]’tZ""’tk) ’

w(t],tz,...,tk) is the characteristic function of the k-variate normal dis-

tribution. Then, from the inversion theorem,

Fal R oX %) = (2?)-k ? 7 eiET; P(t,,t £, dtdt d
b e k o T IRt e s Wy
(2.2)
Writing
AR AT N
(t) = e7¥ E gt Pigtity « eE 5 AGE (] oggtyty! (2.3)
N \ =




.

and expanding the last factor in a multinomial series, we obtain

y 12 ax™ Y
= T © Pyp +Pp_ et
N=0 12" k-],k'

where the inner sum is over nij > 0 with Z"ij = N. A rearrangement of

terms yields

3 il = © (-p:3) 'J k n.
gl se T i -—7;41———— It v (2.5)
i PR S

For |pij| <p<1/(k-1), 1 <1 <j<k, let

. oIty
' g(t) = e 19 . (2.6)
|
Then
f
I~T~ ~T e ~T~
- L
e E XL gl4)] = &7HEE (k) (2.7)




obviously dominates the partial sums in (2.4) and (2.5) and as the follow-
ing argument shows, (2.7) is integrable.

Note that

©

© Lo :
(@ e L e Tleldeaty it = 2000, 0

-00

<
>0} )

k

(2.8)

where (X]’XZ""’Xk) has the multivariate normal distribution with
£ = (69), o) =1, 69 = -p, i # j and the hypothesis |p] < 1/(k-1) in-
sures that © 1is positive definite. Thus, we can substitute (2.4) or (2.5)

into (2.2) and interchange the order of integration and summation. Thus

nu
_k L o (-p.i')
£o(XqsXnse..sX,) = (27) B 5 n—-
x 172 k Na=0  ny o =0 i<j Mij'
12 k-1,k '
k © -1't-X-'12t- n.
I e ' 1t.‘dti. (2.9)

Using (1.3), the integral in (2.9) is easily evaluated obtaining

-—




£ N s MR T e R T

n..
[e°] (<+] (-p]) 1J k n_i
Fo(XysXpsoninx)) = B ) R -—~ﬁ%jj——' m(-1)
X n]2=0 nk-],k=0 1<) ij i=1
3 Hni(xi)q)(xi)v

k

The first part of the conclusion follows upon observing that 2 g = 2 E nij'
i=1 i<J

" 1%’"13
Hence 1 (-1) ' = (-1) , verifying (2.1). The absolute convergence follows

i=1
from (2.7), (2.8) and the observation that convergence for lpijl < 1/(k-1)

implies absolute convergence, since (2.1) is a power series.

Remarks. In [9], Kibble actually ordered the terms as indicated in (1.6).
This is equivalent to (2.1) whenever the series converges absolutely.
¥ibble did not assume Ipijl < 1/(k-1) and merely asserted that term-by-term
‘niogration is permissible and that the series would then be absolutely con-
vergent for all values of the variables if R s positive definite.

e now reexamine the hypothesis Ipijl < 1/(k-1) to show that if this
condition is violated, the Kibble series may in fact diverge.

If k=2, fu(x],xz) is the bivariate normal probability density
X

-10-




function and the condition of Theorem 1 always holds.

Theorem 1 is pre-

cisely Mehler's theorem in that case. Hence consider k > 2.

For n > 0,

3 3
el =l § Al

m=0 2™m! (n-2m)!

so that

(/0 s n odd
H (0) =

n nt(-1)"/?2

2n/2(n/2)! » N even .

We will now calculate f~(0,0,...
X

(2.10)

(2.11)

,0), using the Kibble series, for the

special case P55 = 0 i $ j, and compare this with (1.1), which gives

J

f’v(Oso,-..,O) - (Zﬂ)-k/ZIRI-lé )
X

Substituting (2.11) into (2.1) we get

k
Zn./2
o o k n.! £y ¥
F000 . 0) w ) T B R g e (e
X n]2=0 "k-],k=o i=1 i i<j ij
(2.12)




T

Thus for any Po for which (2.12) converges, it will converge absolutely for
any p with |p| < Po+ For such p, we can rearrange the order of terms in
(2.12) so that it is a power series. Further, if Pij = P i$j, itis

easily seen that

IRl = (1+(k-1)p) (1-p)*" 1.

1

- -3
k/ZIRI must be the same as

Hence, the power series expansion for (2mw)
the power series indicated by (2.12). However, the power series for |R|'é has a
radius of convergence of 1/(k-1) which implies the divergence of (2.1) when-
ever Ipijl >1/(k-1), 1 <i < j <k. Thus, we have shown that in the

equicorrelated case, Theorem 1 can not be improved upon.

3. THe CONVERGENCE OF THE TETRACHORIC SERIES

Kendall [6] obtained the tetrachoric series by integrating the
characteristic function term-by-term as in (2.9). Then he integrated the re-

sulting expression (2.1) term-by-term obtaining

o} 2w

- ———————




@

£ e { f;((x],xz,...,xk)dx]dxz...dxk = Tk(h]’hZ""’hk)' (3.1)
k ]

We now discuss the convergence of the tetrachoric series.

THEOREM 2. Let h]’h2""hk be arbitrary real numbers. Then if
Ipij| < 1/(k-1), 1 < i < j <k, the tetrachoric series Tk(hl’hZ""’hk)
converges absolutely.

Proof. From Erdélyi, Magnus, Oberhettinger, Tricomi [3], p. 208,

forn >0

2
IHn(x)| < ce® /4(n!)%, (3.2)
where ¢ ~ 1.086. Then, from (2.1),
k
w o Ip..lnij . x§/4 k \
|f~(x],x2,...,xk)| g_ck ) Y i (__%J_T__)e“] 1 ("i!)2¢(xi)
X n]2=0 LR k=0 i<j ) 8 i=1
k
¢ - I, - tousd ¥ ;
=_—_Lk7~2‘e]-1 z e H—J‘J_"—‘ H(n,i!)é
(2m) PR UL R R 5 B PR
(3.3)
=) 3=




Let p = max jpijl < 1/(k-1). Then,

i<J
n.. n.. =
ij ij : 1
’pi" k s ,pU, 'pj'i’ S ‘)7/2
0 —lr— Bingt)¥= (1 ' ~we E T, L
i<j ij° i=1 i<j ijt > ;o B L
i N,
i i
i n n] n...l " n...'
i=1 Jui<j ijt j:i>j Ji

The expression inside the bracket is a term of the multinomial expansion of

n.
( Z Ip'IJ! % Z lp.“]l) 1. Thus
j:i<j j:i>j
n..
& M
lo:.] R 1 In./2 T
ot Bl f ] logsl + 1 less) 7 < (G-))'
i< 13 =l §:i<§ Jein)
k
since ) = 2] N Substituting this into (3.3), we have
i=1 i<j

o}g=




£ 2
-z xi/4 " "
’f“(x] ,XZ,...,Xk)I< —cie-]_ﬂ__?/_z_ 020 . cg ((k—])a)i<v: J
x i (2 ) n-|2=0 nk_] ’k"o
k
-z x§/4
ke =1 2 _ Piga
='c'i‘—“k_/Z— 1 7 (kDo) Y
(2w) i<j n..=0
1J
k
k -‘X]x§/4
i=
= E”SL]E{“ﬂCﬂi‘ (1—(k-])5)‘k(k-1)/2_ (3.4)
m™

Since (3.4) dominates all partial sums of the Kibble series and is ob-
viously integrable, the dominated convergence theorem applies and the Kibble

series is integrable for lpijl < 1/(k-1). Hence,

n

ij
© © Pe k o
PARyoMn soavslastid & T wie ) - m [H (x)e(x;)dx,.
PIUTTER Uttt mp ot i M ety ™ Y
For n; > 0, from (1.3)
g. Hni(X)¢(X)dx " Hni-l(hi)¢(hi) (3.5)

1




and for n, =0, since Ho(x) =1, we get

o] 5 [+ B . ]-Q(?)J
SR L e ,

{o(X)‘b(X)dx rI'«b(X)dx 1-¢(h) ~(h ¢(h)
as required by (1.2), and (3.1) follows.

To show the absolute convergence of Tk(hl’hZ""hk)’ we first note that
forn =20
2
H_y(x)] < 3% /2

and forn > 0

2 2
W (0] < ce® /4((n-1)1)% < 3(n) %X /2.

Consequently, by a minor modification of the argument leading to (3.4)

k
3 o 'k(k’l)/zu
k/2 (]-(k-])p)

A RS W
1T (hyshy k‘i(zﬂ)

-16-




o

for Ipijl <1/(k-1), establishing the absolute convergence.

We now investigate the possible relaxation of the hypothesis
|pijl < 1/(k-1), 1 <i < j < k. For this purpose, we first investigate the
computation of the orthant probabilities for k = 3 using the Kibble ordering.

Thus, we compute

“12p 13p 23
(2m)~3/2 z ) _lZ__li_Jli_ H (O

ny,'n,,n Ny, 4Ny ,-1 (0).
=0 12°13° 23 12 13

nyo*Np3-1(0) Iy g#nq°]

From (2.11), in order that the product 1.;:l]Hni_]((l) not vanish, we must have
every n, = 0 or an odd positive integer. We show that, for k = 3, the only
non-vanishing terms are M2 = M3 = Mp3 = 0 or two of NypsNy3shpg are zero
and the remaining one is odd. To see this, note that if one of Ny23M130N23
is zero, say UIPY then N3 and n,y are odd and h]3 + o3 is even and the
term vanishes. If none are zero and Ny + 043 is odd, then either N2

or n;3 must be even. Assume N2 is even, then o3 is odd and Ny3 + Ny3

is even, resulting in a vanishing term. Consequently, for k = 3, the non-

vanishing terms are (0,0,0), (1,0,0), (3,0,0),... and their permutations.

Therefore

=]7=




e T —————

2m+1, 2m+1, 2]
83 .2
Hon(0)H_ (0)

10 =32 % [Pz *Pyg
(3)° + (2m) ) 211

-
n

E m=0

omtl, 2mtl, 2m]
Pz P13 “Pa3 (2m)!
2m+1] 22m(m!)2

(o8]

1 1
8+41
m

1"

=0

-1 -1 -1
1 (cos pyptCOs pygtcos 023)
2 4r 2

the well-known formula for the trivariate orthant probability; also the

power series for cos'1x converges for |x| < 1. Hence, despite the di-
vergence of the series for the density function at 0 for p > %, the
tetrachoric series for the trivariate orthant probabilities converges for
all pij’

The analysis of the convergence of the tetrachoric series for orthant
orobabilities for k > 3 is somewhat more complicated. To aid in this analysis,
we introduce tne following lemma.

lgMma 1. If k > 2 is even, then the non-zero terms in (1.5), when

hi =0, i=1,2,...,k,;are those terms in which an even number (including

zero) of the ni's are zero.




If k > 3 is odd, a term in (1.5) is non-zero, when hy =0,

i=1,2,...,k, if ana only if an odd number of the ny's are zero.

Proof. From (2.11), (1.5) and (1.2), a term in the tetrachoric series
for the orthant probabilities is non-zero if and only if each n. is either
zero or a positive odd integer.

Considering such terms, if k > 2 is even and an odd number of the n,'s

J

k
are zero, then ) n, = ZZni. is even and is the sum of an odd number of
i=1

positive odd integers, which is a contradiction.

Similarly, if k > 3 is odd and an even number of the ni's are zero,

k
then }

n; is the sum of an odd number of odd numbers and can not be even.
i=1

We now investigate the convergence of the tetrachoric series for k > 3.
LEMma 2. Let k > 4 be an even integer and let

Pz = Mgg = «or S Mg g = 2m+1, ny; = 2m otherwise, m = 0,1,2,..., .

J

Then if p > 1/(k-1),

N k
- k
My i (0) = *L—.(]-If H ](0))(¢(o) (3.6)

w]G=




tends to infinity as m - «, where N = | n...
=y

Proof. Since N = g (2m(k-1)+1),

%{2m(k-1)+1)

. P k
Mo,k (P) (2 ) 2 om 1 FEDI T2 (H

2m(k-1)(0))k(¢(0)) .

Write

K(am(k-1)+1)

= k k
Mm,k(p) - (Zrn:?)k/Z(Zm)!ka-])/z (Hzm(k_])(o)) (¢(0)) .

Then, using (2.11) and the elementary inequality

(2n) % M™% ¢ n1 < 2(2n) %M ME o (3.7)

we get




sl s (gn)'k(k+])/4pk/2(2m(k'])+])(k_])mk(k-])
e (2m1) K/ 2K (k-T) 74 ,Kk(3k-T)/4

i (2m) K(k¥1)/4 Kk/2 '
(2me1)K/2 KK-T)78 K (3K-T)74

(p(k-1))mk(k-1) (3.8)

which clearly tends to infinity, whenever p > 1/(k-1). This leads to the

following therorem.
THEOREM 3. The tetrachoric series (1.5) with hy =0, 1 =1,2,....k,

diverges for k an even integer whenever p.. > p > 1/(k-1), 1 < i < j < k.

iJ
Proof. The proof is immediate upon observing that for each fixed m,
Mm,k(p) is a term in the tetrachoric series for orthant probabilities when
Pij = Ps 1 <i<J<k. Thus we have exhibited a divergent subsequence of
terms, which clearly precludes convergence. Thé same Tower bound (3.8)
applies if Pi; >ps, 1 <i<j<k, yielding the same conclusion in this case.

He now consider the tetrachoric series with Kibble ordering for the

orthant probabilities and even values of k, restricting to the case

pij =p, 1 <1< j<k. This is a power series in p, of the form

'{‘ =21~




o

Y« oN and the previous argument does not show that Gy does not tend
N=0 oK ok

to zero, since

-1 K
T (n;.1)""(e(0)" 1 H (0) (3.9)
n; 520 i< J j=

E“iij

N,k

and in Lemma 2 we made a specific choice of the "ij's’ rather than computing
°N,k"
THEOREM 4. The tetrachoric series with Kibble ordering (1.6) for orthant
probabilities diverges for even k > 4, whenever pij >p > 1/(k-1),
s 1<F<k,

Proof. Let N = ;(Zm(k-l)+]). The Mm,k(p) (3.6) is a term in (3.9)
for that N. From Lemma 1, the non-zero terms of (3.9) all have an even
number of ni's equal to zero.

If all n; are odd, then from (2.11), the sign of such terms is given by

(L gz

i




and depends only on N. Thus, for fixed N, all terms with the opposite

sign must be among those terms with a positive even number of ni‘s equal
to zero. Let YN Kk be the sum of all terms in (3.9) with no ni's zero and

let BN K be the sum of all terms in (3.9) with at least two ni's equal to

zero. Then, for p >0,

0 <M (o) < vy ()oY, (3.10)
k
where v, (p) > 0, since N = 5{2m(k-1)+1] and N - E-1's necessarily even.
N,k 2 2

Obviously, Ok T W,k <5 BN,k'

Consider the tetrachoric series with Kibble ordering for & = k - 2.
Since each term in BN,k has at least two n, = 0, each such term appears in
the tetrachoric series with Kibble ordering for £ variables with the

omission of the factors (H_;(0)5(0))%. Thus,

=
1o~ 8




Since for 1/(k-1) < p < 1/(k-3), EBN’kpN converges absolutely by Theorem 2,
SN’kpN +0 as N + » and Mm,k(p) + o, Further, (3.10) implies that
NE; “N,kpN diverges for 1/(k-1)< p < 1/(k-3), but this is a power series
®

and hence divergence is established for all p > 1/(k-1). The conclusion
now follows trivially.

There is an extensive literature on the evaluation of orthant pro-
babilities for k = 4. Many references may be found in N.L. Johnson and
S. Kotz [5], pages 53-58. One of these methods merits comment here since it
specifically employs the tetrachoric series with Kibble ordering. 1In
P.A.P. Moran [11], the tetravariate orthant probability is used to calculate
the variance of the Spearman rank correlation coefficient. To obtain the
orthant probability, Moran rederived the tetrachoric series and explicitly
calculated the first few terms of the tetrachoric series with Kibble ordering.
He made no comment about the validity of the series, but did comment that
for the problem at hand calculation is tedious.

The convergence properties of the tetrachoric series for orthant pro-

babilities appear to be more difficult to investigate when k 1is odd. These

properties are discussed in the following theorems.
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THEOREM 5. Let k be an odd integer > 3 and order all the correla-

tion coefficients by absolute magnitude, that is, |p,| > eyl > 2| pqi,

q = (;), so that P, has the vth largest magnitude among the Pij» 1 £ix §<k.
If the tetrachoric series (tetrachoric series with Kibble ordering) for
orthant probabilities converges absolutely for 2 = k-1 with correlation co-
efficients p, v = 1,2,...,(%), then the tetrachoric series (tetrachoric

series with Kibble ordering) for the orthant probabilities converges

absolutely for k.

Proof. We have

n..
5 T g oo logl ™ & \
T I o I (elop*nm M min (0] (3.11)
PV e L RN T

From Lemma 1, every non-zero term in Tk must have at least one n. equal to

zero. Thus, successively setting each n; equal to zero, we get

k : 1.|nij k
T <H(0) ] 1 (e(0)" m J O _(0) ] (3.12)
v=1 nijgp i< nij! i=1 i

=25«
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the right side of (3.12) dominates (3.11) since we have enumerated terms
with more than one n. = 0 more than once. For each fixed v, the inner sum dom-

inates ¢(0)Tk_]. Thus (3.11) converges absolutely whenever each of the

k series in (3.12) converges absolutely. Each such series depends on
(;) correlation coefficients. For each series in (3.12) if pij is not in
the set of (;) correlation coefficients of largest magnitude, we replace it

by one that does not &ppear in the series in such a way that each Py

v = 1,2,...,(2) appears once. Thus,

n..
k o] oo lp\)l 1‘] 2,
T, < k(¢(0))"H_ (0) §} s ) I ——— 0 [# _,(0)],
k 1 o e SRR R n.-1
n]Z—O nz_]’g-O i<j ijt =l i

which converges by hypothesis. The conclusion for the tetrachoric series
/ith Kibble ordering follows upon rearrangementiof the terms.

REMARK. e have actually proved the absolute convergence of the
tetrachoric series whenever each of the k series in (3.12) converges
absolutely.

CoroLLARY 1. If each Oij = p, then the tetrachoric series (tetrachoric

ceries with Kibble ordering) for the orthant probabilities converges

w26




ahsolutely whenever -1/(k-1) < p < 1/(k-2), for k an odd integer > 5.
Proof. The conclusion follows from combining Theorem 5 and Theorem 2.
COROLLARY 2. If k = 3, the tetrachoric series (tetrachoric series with

Kibble ordering) converges absolutely.

Proof. This is immediate from Theorems 5 and 2.

The observations utilized in Theorem 5 also enable us to establish the
following.

THEOREM 6, If k > 5 is odd and if Byj > 1/(k-2) for 1 < i < j <k,
then the tetrachoric series (tetrachoric series with Kibble ordering) for
the orthant probabilities diverges.

Proof. Consider the tetrachoric series with Kibble ordering. From
Lemma 1, the contribution to N K (3.9) is zero unless an odd number of the
ni's are zero and the remainder are positive odd integers. Write

ok =Y 1 BN,k’ where Nk are these terms with exactly one n. = 0. Then

n.k i

2
-1 2
e kY A dlT IR 0 B K {0),
N ’k n_ij_>_0 1-<j 1J ‘] i___] rl_-l']

Xnij=N

where £ =k -1 and 1 < i < j < &. From Theorem 4, ZyN kpN diverges for
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p > 1/(k-2) = 1/(&-1). BN,k corresponds to those terms with at least 3 or
more n. = 0. Each such term occurs in the tetrachoric series with Kibble
ordering for k - 3 variables. For 1/(k-2) < p < 1/(k-4), that series is
absolutely convergent. Thus, the methodology of Theorem 4 applies and we
obtain the conclusion.

So far we have only considered the case of orthant probabilities.
Therefore, we now show that similar results obtain in a somewhat more general
case. For this purpose, we require the following lemma.

LEMMA 3. Let x # sm/2(k-1), where s and k are integers, and

k > 2. Then

cos um(x) = cos [(2 k'; m-]) 3 X - ((k°; m-]) n]

does not tend to zero as m tends to infinity.

Proof. Let m, = 452(k-1), j=1,2,...,. Then




1
cos u_ (x) = cos [43%(k-1)%- ) x - 252(k-1)2m+5)
J
A
= - sin [2j(k-1)(1 - d  x}
852(k-1)2
Since

2i(k-1) - grrey < 20D - 5322i:7f7)% < 25(k-1),

for any € > 0, there is a jo such that for all j > jo

Isin[25(k-1)(1- g}@zi:——go% x] - sin 2j(k-1)x| < ¢

1)

Hence if

1n stl25k-1){] - —s——=)¥ x] = 0,
jooo 8i2(k-1)2

it follows that x = sm/2(k-1), s an integer.




We now show that under specific circumstances, the tetrachoric series

diverges for P >p > 1/(k-1).

THEOREM 7. If Pjj > P> 1/(k-1), Tk(x X ...,x) diverges whenever

:g x # sn/2(k-1), s an integer.
f Proof. Let Qm’p(x) be the term of Tk(x,x,...,x) with Pjj = P» Myj = M

Then

pmk(k-l)/2 K K
O, ot = 2;53111:777§' ¢ (x) H(k-l)m-l(x)' (3.14)

We examine the behavior of Qm p(x) as m >, From Erdél i, Magnus,

Oberhettinger, Tricomi [3], p. 201,

2 n
3 T(n+1) 2n+1 % nmy x“/4 n2 -k
H (x) = én/zf(g+1) cos{{=s=J% - Soe" A 0llD e ), (3.15)

as n » «. Replacing the gamma functions in (3.15) by Stirling's approximation,

we obtain




1 2 -1
H(x) = B_¢ cosk((ig-"—‘—)'zx . !’g)ek" /4(1+0(n”?)). (3.16)

Substituting (3.16) into (3.14) and again employing Stirling's approximation

yields 1
ok (k=1)/2 ok/2 e-kx2/4[(k_])m_]]k((k-1)m-1)/2
O, %) = (T K(K-1)724-K/2 5 KK T/
{
. cosk((Bklimlyl o lkeUmlm qo0ny).  (3.07)
Writing

((k-])m—])k(k-])mlz & [(k_])m]k(k-])m/Z(] g (Ei%ja)k(k_])m/z

= ((k_l)m)k(k-])m/ze‘k/2(1+0(m-]))

and substituting this into (3.17), we get




((k- ]lp)mk(k 1)/2 k/2 -kx /4[(k 1)m- ]J,k/z

Q%) = s 1)/4(2 KT}/
cos¥[(ElkDmyle y ((keDhmeby ) (q40(n7)). (3.18)

Then, if x # sn/2(k-1), s an integer, it follows from Lemma 3 that there

exists a subsequence {m“} such that

lim lQm (x)| =

Vo VP
whenever p > 1/(k-1). Clearly, this precludes the convergence of the
tetrachoric series for Pyj = P> 1/(k-1), 1 < i < j < k and consequently

for pij >p, 1 <i<j<k.

ConcLUDING REMARKS., In this paper, we have shown that the tetrachoric

series need not converge. We have exhibited some instances of convergence
and some of divergence. The results of this paper do not exhaust all the

possibilities, that is, not all the possible choices of the Pij

1<i<j<k or hi’ i=1,2,...,k have been treated. Further investigation




will be needed to resolve the remaining cases. However, we have shown
that the tetrachoric series should be employed in applications only under

highly restrictive conditions.
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